Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Environ Sci Pollut Res Int ; 2022 Feb 17.
Article in English | MEDLINE | ID: covidwho-2312411

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is regarded as a threat because it spreads quickly across the world without requiring a passport or establishing an identity. This tiny virus has wreaked havoc on people's lives, killed people, and created psychological problems all over the world. The viral spike protein (S) significantly contributes to host cell entry, and mutations associated with it, particularly in the receptor-binding protein (RBD), either facilitate the escape of virus from neutralizing antibodies or enhance its transmission by increasing the affinity for cell entry receptor, angiotensin-converting enzyme 2 (ACE2). The initial variants identified in Brazil, South Africa, and the UK have spread to various countries. On the other hand, new variants are being detected in India and the USA. The viral genome and proteome were applied for molecular detection techniques, and nanotechnology particles and materials were utilized in protection and prevention strategies. Consequently, the SARS-CoV-2 pandemic has resulted in extraordinary scientific community efforts to develop detection methods, diagnosis tools, and effective antiviral drugs and vaccines, where prevailing academic, governmental, and industrial institutions and organizations continue to engage themselves in large-scale screening of existing drugs, both in vitro and in vivo. In addition, COVID-19 pointed on the possible solutions for the environmental pollution globe problem. Therefore, this review aims to address SARS-CoV-2, its transmission, where it can be found, why it is severe in some people, how it can be stopped, its diagnosis and detection techniques, and its relationship with the environment.

2.
Int J Inflam ; 2022: 5735546, 2022.
Article in English | MEDLINE | ID: covidwho-1807700

ABSTRACT

Background: Tissue damage caused by COVID-19 could be detected by several clinical indicators including hematological, immunological, biochemical, and inflammatory markers. This study was to detect these clinical parameters to reveal the correlation between the factors and their roles in the development of COVID-19, to explore the hazard factors in severe cases. Materials and Methods: A total of 200 participants of both sexes were included in the study, with an age range of (25-72) years, categorized into three main groups: 50 healthy individuals, 62 mild infected patients, and 88 severe infected patients with pneumonia. Different hematological and clinical parameters were included in the analysis (Basrah city, Iraq). Serum levels of interleukin-6 (IL-6), ferritin, and high-sensitivity C-reactive protein (hs-CRP) were assessed for all participants using an enzyme-linked immunosorbent assay (ELISA). The liver, renal, and cardiac functions were assessed by clinical chemistry testing. Results: COVID-19 patients had leukocytosis, with an increased number of neutrophils and a decreased lymphocyte count, according to our findings. In regard to inflammatory parameters, both ESR and hs-CRP showed significant differences between the two groups, whereas IL-6 was significantly higher in the total severe group compared to the other two groups. Biochemical results revealed that each lactate dehydrogenase (LDH), ferritin, alanine aminotransferase (ALT), and aspartate aminotransferase (AST) had significant changes in the total severe group. Among pneumonic with an O2 requirement and pneumonic without an O2 requirement, there were significant differences in immunological and inflammatory markers (p > 0.05). The neutrophils-lymphocytes ratio (NLR) was highly elevated in severe who required O2. Moreover, IL-6, lymphocytes, and neutrophils were possible risk factors for COVID-19 infection, with the strongest influence of IL-6 with a high odds ratio (OR: 24.138, 95% CI: 8.437-30.65, p < 0.01). Furthermore, there were significant correlations among the indicators. Conclusion: Each of IL-6, lymphocytes, and neutrophils might represent major factors in the severity of COVID-19 and IL-6 plays the main role in inducing the inflammatory and pathophysiology process that is known as the cytokine storm.

SELECTION OF CITATIONS
SEARCH DETAIL